Roc and the Bounds on Tail Probabilities via Theorems of Dubins and F. Riesz.

نویسندگان

  • Eric Clarkson
  • J L Denny
  • Larry Shepp
چکیده

For independent X and Y in the inequality P(X ≤ Y + μ), we give sharp lower bounds for unimodal distributions having finite variance, and sharp upper bounds assuming symmetric densities bounded by a finite constant. The lower bounds depend on a result of Dubins about extreme points and the upper bounds depend on a symmetric rearrangement theorem of F. Riesz. The inequality was motivated by medical imaging: find bounds on the area under the Receiver Operating Characteristic curve (ROC).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Concept of Sub-independence and Its Application in Statistics and Probabilities

 Many Limit Theorems, Convergence Theorems and Characterization Theorems in Probability and Statistics, in particular those related to normal distribution , are based on the assumption of independence of two or more random variables. However, the full power of independence is not used in the proofs of these Theorems, since it is the distribution of summation of the random variables whic...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

Bounds for CDFs of Order Statistics Arising from INID Random Variables

In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations a...

متن کامل

Optimal binomial, Poisson, and normal left-tail domination for sums of nonnegative random variables

Exact upper bounds on the generalized moments E f(Sn) of sums Sn of independent nonnegative random variables Xi for certain classes F of nonincreasing functions f are given in terms of (the sums of) the first two moments of the Xi’s. These bounds are of the form E f(η), where the random variable η is either binomial or Poisson depending on whether n is fixed or not. The classes F contain, and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The annals of applied probability : an official journal of the Institute of Mathematical Statistics

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2009